Perfecting Straddle Bot Logic

So. The primary problem to approach this was we were seeing this as a two legged problem. Lets bifurcate that and make it single leg problem.

Leg[0] = “Execute BankNIFTY ATM CE at 9:20 with stop loss of 20% and exit at 14:50”

Leg[1] = “Execute BankNIFTY ATM PE at 9:20 with stop loss of 20% and exit at 14:50”

and so on…

We will maintain a dict of all Legs of each account in this format.

{
	0: {start:{   'average_price': 110.5,
						    'cancelled_quantity': 0,
						    'disclosed_quantity': 0,
						    'exchange': 'NFO',
						    'exchange_order_id': '1400000005892263',
						    'exchange_timestamp': '2020-07-17 09:32:31',
						    'exchange_update_timestamp': '2020-07-17 09:32:31',
						    'filled_quantity': 20,
						    'guid': '01Xe7ezwky56UFn',
						    'instrument_token': 11258882,
						    'market_protection': 0,
						    'meta': {},
						    'order_id': '200717000592173',
						    'order_timestamp': '2020-07-17 09:32:31',
						    'order_type': 'MARKET',
						    'parent_order_id': None,
						    'pending_quantity': 0,
						    'placed_by': 'QT1105',
						    'price': 0,
						    'product': 'NRML',
						    'quantity': 20,
						    'status': 'COMPLETE',
						    'status_message': None,
						    'status_message_raw': None,
						    'tag': None,
						    'tradingsymbol': 'BANKNIFTY2072320800PE',
						    'transaction_type': 'SELL',
						    'trigger_price': 0,
						    'validity': 'DAY',
						    'variety': 'regular'}
			end:{   'average_price': 110.5,
					    'cancelled_quantity': 0,
					    'disclosed_quantity': 0,
					    'exchange': 'NFO',
					    'exchange_order_id': '1400000005892263',
					    'exchange_timestamp': '2020-07-17 09:32:31',
					    'exchange_update_timestamp': '2020-07-17 09:32:31',
					    'filled_quantity': 20,
					    'guid': '01Xe7ezwky56UFn',
					    'instrument_token': 11258882,
					    'market_protection': 0,
					    'meta': {},
					    'order_id': '200717000592173',
					    'order_timestamp': '2020-07-17 09:32:31',
					    'order_type': 'MARKET',
					    'parent_order_id': None,
					    'pending_quantity': 0,
					    'placed_by': 'QT1105',
					    'price': 0,
					    'product': 'NRML',
					    'quantity': 20,
					    'status': 'COMPLETE',
					    'status_message': None,
					    'status_message_raw': None,
					    'tag': None,
					    'tradingsymbol': 'BANKNIFTY2072320800PE',
					    'transaction_type': 'SELL',
					    'trigger_price': 0,
					    'validity': 'DAY',
					    'variety': 'regular'}
			data:{
				log1: "some other info"
				}
	}

}

Execution:

On 9:20 - Send Order Execution of Leg [0]

Expecting Output:

{   'average_price': 110.5,
    'cancelled_quantity': 0,
    'disclosed_quantity': 0,
    'exchange': 'NFO',
    'exchange_order_id': '1400000005892263',
    'exchange_timestamp': '2020-07-17 09:32:31',
    'exchange_update_timestamp': '2020-07-17 09:32:31',
    'filled_quantity': 20,
    'guid': '01Xe7ezwky56UFn',
    'instrument_token': 11258882,
    'market_protection': 0,
    'meta': {},
    'order_id': '200717000592173',
    'order_timestamp': '2020-07-17 09:32:31',
    'order_type': 'MARKET',
    'parent_order_id': None,
    'pending_quantity': 0,
    'placed_by': 'QT1105',
    'price': 0,
    'product': 'NRML',
    'quantity': 20,
    'status': 'COMPLETE',
    'status_message': None,
    'status_message_raw': None,
    'tag': None,
    'tradingsymbol': 'BANKNIFTY2072320800PE',
    'transaction_type': 'SELL',
    'trigger_price': 0,
    'validity': 'DAY',
    'variety': 'regular'}

If the status is complete, We will send order execution of Leg [0] and will expect similar output.

On 14:50

Send Order Modification of Leg[0] using ["end"]["order_id]

If the quantity ≠ filled quantity i.e. SL not triggered

If No: Update the [“end”] with this output
If Yes:

Check (If status: “open”): Modify it to reverse market order
Check (If status: “cancelled”):

If(cancelled manual): Skip

If(cancelled by broker): Fire Fresh reverse Market Order

Just minor paste of past note made.

Hi, I am a newbie to learning python. I also wanted to automated a short straddle strategy almost like you have written above. Do you have any written code that I can reference with?

That’s from my personal deployment having my own set of rules on error handling. I do not want to share it. The core schema is pretty basic; You can write up in 10 mins.

I wish I knew Python to write this in 10 mins… :grinning:

Anyways thanks… Most of it went over my head…

Its not hard.

Check up - Coding BankNIFTY Golden Ratio Strategy Part I - YouTube

Alternatively, You can automate this using alicebot.in. Its free to map.

Thanks, let me go through it…